Redistribution of SOD3 expression due to R213G polymorphism affects pulmonary interstitial macrophage reprogramming in response to hypoxia

Caitlin V. Lewis, Anastacia M. Garcia, Samuel D. Burciaga, Janelle N. Posey, Mariah Jordan, Thi-Tina Nguyen, Kurt R. Stenmark, Claudia Mickael, Christina Sul, Cassidy Delaney, Eva S. Nozik
University of Colorado Anschutz Medical Campus.
United States

Physiological Genomics
Physiol Genomics 2024;
DOI: 10.1152/physiolgenomics.00078.2024

Abstract
The extracellular isoform of superoxide dismutase (SOD3) is decreased in patients and animals with pulmonary hypertension (PH). The human R213G single nucleotide polymorphism (SNP) in SOD3 causes its release from tissue extracellular matrix (ECM) into extracellular fluids, without modulating enzyme activity, increasing cardiovascular disease risk in humans and exacerbating chronic hypoxic PH in mice. Given the importance of interstitial macrophages (IM) to PH pathogenesis, this study aimed to determine whether R213G SOD3 increases IM accumulation and alters IM reprogramming in response to hypoxia. R213G mice and wild-type (WT) controls were exposed to hypobaric hypoxia for 4 or 14 days compared to normoxia. Flow cytometry demonstrated a transient increase in IMs at day 4 in both strains. Contrary to our hypothesis, the R213G SNP did not augment IM accumulation. To determine strain differences in the IM reprogramming response to hypoxia, we performed RNAsequencing on IMs isolated at each time point. We found that IMs from R213G mice exposed to hypoxia activated ECM-related pathways and a combination of alternative macrophage and proinflammatory signaling. Furthermore, when compared to WT responses, IMs from R213G mice lacked metabolic remodeling and demonstrated a blunted anti-inflammatory response between the early (day 4) and later (day 14) time points. We confirmed metabolic responses using Agilent Seahorse assays whereby WT, but not R213G, IMs upregulated glycolysis at day 4 that returned to baseline at day 14. Finally, we identify differential regulation of several redox-sensitive upstream regulators that could be investigated in future studies.

Category
Class III. Pulmonary Hypertension Associated with Alveolar Hypoxia
Animal Models of Pulmonary Vascular Disease and Therapy

Age Focus: No Age-Related Focus

Fresh or Filed Publication: Fresh (PHresh). Less than 1-2 years since publication

Article Access
Free PDF File or Full Text Article Available Through PubMed or DOI: No

Scroll to Top