Ryan Pewowaruk, J. Carter Ralphe, Luke Lamers, Alejandro Roldán-Alzate
University of Wisconsin. William S. Middleton Memorial Veteran’s Hospital.
United States
Cardiovascular Engineering and Technology
Cardiovasc Eng Technol 2021; 12: 494-504
DOI: 10.1007/s13239-021-00543-w
Abstract
Objective: This study assessed the ability of hemodynamic simulations to predict the success of catheter interventions in a swine model of branch pulmonary artery stenosis (bPAS).
Background: bPAS commonly occurs in congenital heart disease and is often managed with catheter based interventions. However, despite technical success, bPAS interventions do not lead to improved distal pulmonary blood flow (PBF) distribution in approximately 1/3rd of patients. New tools are needed to better identify which patients with bPAS would most benefit from catheter interventions.
Methods: For 13 catheter intervention cases in swine with surgically created left PAS (LPAS), PA pressures from right heart catheterization (RHC) and PBF distributions from MRI were measured before and after catheter interventions. Hemodynamic simulations with a reduced order computational fluid dynamics (CFD) model were performed using non-invasive PBF measurements derived from MRI, and then correlated with changes in invasive measures of hemodynamics and PBF distributions before and after catheter intervention to relieve bPAS.
Results: Compared to experimentally measured changes in left PBF distribution, simulations had a small bias (3.4 ± 11.1%), moderate agreement (ICC = 0.69 [0.24-0.90], 0.71 [0.23-0.91]), and good diagnostic capability to predict successful interventions (> 20% PBF increase) (AUC 0.83 [0.59-1.0]). Simulations had poorer prediction of changes in stenotic pressure gradient (ICC = 0.28 [- 0.33 to 0.73], r = 0.57 [- 0.04 to 0.87]) and MPA systolic pressure (ICC = 0.00 [- 0.52 to 0.53], r = 0.29 [- 0.32 to 0.72]).
Conclusion: While there was only weak to moderate agreement between predicted and measured changes in PA pressures and pulmonary blood flow distributions, hemodynamic simulations did show good diagnostic value for predicting successful versus unsuccessful catheter based interventions to relieve bPAS. The results of this proof of concept study are promising and should encourage future development for using hemodynamic models in planning interventions for patients with bPAS.
Category
Segmental Pulmonary Arterial Disease
Diagnostic Testing for Pulmonary Vascular Disease. Non-invasive Testing
Surgical and Catheter-mediated Interventions for Pulmonary Vascular Disease
Animal Models of Pulmonary Vascular Disease and Therapy
Age Focus: No Age-Related Focus
Fresh or Filed Publication: Filed (PHiled). Greater than 1-2 years since publication
Article Access
Free PDF File or Full Text Article Available Through PubMed or DOI: Yes