Qing Lu, Xutong Sun, Manivannan Yegambaram, Wojciech Ornatowski, Xiaomin Wu, Hui Wang, Alejandro Garcia-Flores, Victoria Da Silva, Evgen A. Zemskov, Haiyang Tang, Jeffrey R. Fineman, Kim Tieu,Ting Wang, Stephen M. Black
Florida International University. University of Arizona Health Sciences. University of California San Francisco.
United States
Journal of Biological Chemistry
J Biol Chem 2023; 299:
DOI: 10.1016/j.jbc.2023.103067
Abstract
Mitochondrial fission and a Warburg phenotype of increased cellular glycolysis are involved in the pathogenesis of pulmonary hypertension (PH). The purpose of this study was to determine whether increases in mitochondrial fission are involved in a glycolytic switch in pulmonary arterial endothelial cells (PAECs). Mitochondrial fission is increased in PAEC isolated from a sheep model of PH induced by pulmonary overcirculation (Shunt PAEC). In Shunt PAEC we identified increases in the S616 phosphorylation responsible for dynamin-related protein 1 (Drp1) activation, the mitochondrial redistribution of Drp1, and increased cellular glycolysis. Reducing mitochondrial fission attenuated cellular glycolysis in Shunt PAEC. In addition, we observed nitration-mediated activation of the small GTPase RhoA in Shunt PAEC, and utilizing a nitration-shielding peptide, NipR1 attenuated RhoA nitration and reversed the Warburg phenotype. Thus, our data identify a novel link between RhoA, mitochondrial fission, and cellular glycolysis and suggest that targeting RhoA nitration could have therapeutic benefits for treating PH.
Category
Vascular Cell Biology and Mechanisms of Pulmonary Vascular Disease
Animal Models of Pulmonary Vascular Disease and Therapy
Age Focus: No Age-Related Focus
Fresh or Filed Publication: Filed (PHiled). Greater than 1-2 years since publication
Article Access
Free PDF File or Full Text Article Available Through PubMed or DOI: Yes