Dynamically stiffening biomaterials reveal age- and sex-specific differences in pulmonary arterial adventitial fibroblast activation

Mikala C. Mueller, Yanmei Du, Lori A. Walker, Chelsea M. Magin
University of Colorado, Anschutz Medical Campus.
United States

Matrix Biology Plus
Matrix Biol Plus 2024;
DOI: 10.1016/j.mbplus.2024.100145

Abstract
Respiratory diseases like pulmonary arterial hypertension (PAH) frequently exhibit sexual dimorphism. Female PAH patients are more susceptible to the disease but have increased survival rates. This phenomenon is known as the estrogen paradox, and the underlying mechanisms are not fully understood. During PAH progression in vivo, human pulmonary arterial adventitial fibroblasts (hPAAFs) differentiate into an activated phenotype. These cells produce excess, aberrant extracellular matrix proteins that stiffen the surrounding pulmonary arterial tissues. Here, we employed dynamic poly(ethylene glycol)-alpha methacrylate (PEGαMA)-based biomaterials to study how the age and sex of human serum influenced hPAAF activation in response to microenvironmental stiffening in vitro. Results showed female and male cells responded differently to increases in microenvironmental stiffness and serum composition. Male hPAAFs were less activated than female cells on soft hydrogels and more responsive to increases in microenvironmental stiffness regardless of serum composition. Female hPAAF activation followed this pattern only when cultured in younger (age < 50) female serum or when older (age ≥ 50) female serum was supplemented with estradiol. Otherwise, female hPAAF activation was relatively high on both soft and stiffened hydrogels, with little difference in activation between the two conditions. Collectively, these results suggest that it may be possible to model the estrogen paradox observed in PAH in vitro and that it is critical for researchers to report cell sex and serum source when conducting in vitro experimentation.

Category
Vascular Cell Biology and Mechanisms of Pulmonary Vascular Disease
Genetic Factors Associated with Pulmonary Vascular Disease

Age Focus: Pediatric Pulmonary Vascular Disease or Adult Pulmonary Vascular Disease

Fresh or Filed Publication: Fresh (PHresh). Less than 1-2 years since publication

Article Access
Free PDF File or Full Text Article Available Through PubMed or DOI: Yes

Scroll to Top