Channelopathy Genes in Pulmonary Arterial Hypertension

Carrie L. Welch, Wendy K. Chung
Columbia University Irving Medical Center.
United States

Biomolecules
Biomolecules 2022; 12:
DOI: 10.3390/biom12020265

Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. The underlying pathogenetic mechanisms are heterogeneous and current therapies aim to decrease pulmonary vascular resistance but no curative treatments are available. Causal genetic variants can be identified in ~13% of adults and 43% of children with PAH. Knowledge of genetic diagnoses can inform clinical management of PAH, including multimodal medical treatment, surgical intervention and transplantation decisions, and screening for associated conditions, as well as risk stratification for family members. Roles for rare variants in three channelopathy genes-ABCC8ATP13A3, and KCNK3-have been validated in multiple PAH cohorts, and in aggregate explain ~2.7% of PAH cases. Complete or partial loss of function has been demonstrated for PAH-associated variants in ABCC8 and KCNK3. Channels can be excellent targets for drugs, and knowledge of mechanisms for channel mutations may provide an opportunity for the development of PAH biomarkers and novel therapeutics for patients with hereditary PAH but also potentially more broadly for all patients with PAH.

Category
Review Articles Concerning Pulmonary Vascular Disease
Genetic Factors Associated with Pulmonary Vascular Disease
Class I. Heritable Pulmonary Hypertension

Age Focus: Pediatric Pulmonary Vascular Disease or Adult Pulmonary Vascular Disease

Fresh or Filed Publication: Filed (PHiled). Greater than 1-2 years since publication

Article Access
Free PDF File or Full Text Article Available Through PubMed or DOI: Yes

Scroll to Top