A Nomogram Prediction Model for Persistent Pulmonary Hypertension of the Newborn in Neonates Hospitalized for the First Time After Birth

Yan Zhang, Juan Wen, Min Zeng, Limei Zhang, Yusheng Pang
First Affiliated Hospital of Guangxi Medical University. Women’s Hospital of Nanjing Medical University and Nanjing Women and Children’s Healthcare Hospital.
China

Pediatric Emergency Care
Pediatr Emerg Care 2024;
DOI: 10.1097/PEC.0000000000003167

Abstract
Objective: Persistent pulmonary hypertension of the newborn (PPHN) is one of the critical neonatal diseases associated with high morbidity and mortality. This study attempted to conduct a nomogram prediction model for performing early identification of PPHN and providing effective information for clinical practice.
Methods: A total of 456 newborns who first admitted to the hospital after birth were included in the analysis, including 138 newborns with PPHN and 318 newborns without PPHN (as controls). The optimal predictive variables selection was performed based on LASSO (least absolute shrinkage and selection operator) regression and multivariate logistic regression. Using the selected variables, a nomogram prediction model was developed. To validate the model, the model was assessed using the receiver operating characteristic curve, calibration plot, and clinical impact curve.
Results: Six predictors, namely, gestational age, neonatal respiratory distress syndrome, the levels of hemoglobin and creatine kinase-MB, gestational thyroid dysfunction, and Pao2, were identified by LASSO and multivariate logistic regression analysis from the original 30 variables studied. The constructed model, using these predictors, exhibited favorable predictive ability for PPHN, with an area under the receiver operating characteristic of 0.897 (sensitivity = 0.876, specificity = 0.785) in the training set and 0.871 (sensitivity = 0.902, specificity = 0.695) in the validation set, and was well calibrated, as indicated by the PHosmer-Lemeshow test values of 0.233 and 0.876 for the training and validation sets, respectively.
Conclusions: The model included gestational age, neonatal respiratory distress syndrome, the levels of hemoglobin and creatine kinase-MB, gestational thyroid dysfunction, and Pao2 had good prediction performance for predicting PPHN among newborns first admitted to the hospital after birth.

Category
Class I. Persistent Pulmonary Hypertension of the Newborn
Diagnostic Testing for Pulmonary Vascular Disease. Risk Stratification

Age Focus: Pediatric Pulmonary Vascular Disease

Fresh or Filed Publication: Fresh (PHresh). Less than 1-2 years since publication

Article Access
Free PDF File or Full Text Article Available Through PubMed or DOI: No

Scroll to Top