Yuing-Che Chen, Po-Yuan Hsu, Mao-Chang Su, Ung-Lung Chen, Ya-Ting Chang, Chien-Hung Chin, I.-Chun Lin, Yu-Mu Chen, Ting-Ya Wang, Yong-Yong Lin, Chiu-Ping Lee, Meng-Chih Lin, Chang-Chun Hsiao
Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine. Chang Gung University of Science and Technology.
Taiwan
Molecular and Cellular Biochemistry
Mol Cell Biochem 2023;
DOI: 10.1007/s11010-023-04880-3
Abstract
Altered expressions of pro-/anti-oxidant genes are known to regulate the pathophysiology of obstructive sleep apnea (OSA).We aim to explore the role of a novel long non-coding (lnc) RNA FKSG29 in the development of intermittent hypoxia with re-oxygenation (IHR)-induced endothelial dysfunction in OSA. Gene expression levels of key pro-/anti-oxidant genes, vasoactive genes, and the FKSG29 were measured in peripheral blood mononuclear cells from 12 subjects with primary snoring (PS) and 36 OSA patients. Human monocytic THP-1 cells and human umbilical vein endothelial cells (HUVEC) were used for gene knockout and double luciferase under IHR exposure. Gene expression levels of the FKSG29 lncRNA, NOX2, NOX5, and VEGFA genes were increased in OSA patients versus PS subjects, while SOD2 and VEGFB gene expressions were decreased. Subgroup analysis showed that gene expression of the miR-23a-3p, an endogenous competitive microRNA of the FKSG29, was decreased in sleep-disordered breathing patients with hypertension versus those without hypertension. In vitro IHR experiments showed that knock-down of the FKSG29 reversed IHR-induced ROS overt production, early apoptosis, up-regulations of the HIF1A/HIF2A/NOX2/NOX4/NOX5/VEGFA/VEGFB genes, and down-regulations of the VEGFB/SOD2 genes, while the protective effects of FKSG29 knock-down were abolished by miR-23a-3p knock-down. Dual-luciferase reporter assays confirmed that FKSG29 was a sponge of miR-23a-3p, which regulated IL6R directly. Immunofluorescence stain further demonstrated that FKSGH29 knock-down decreased IHR-induced uptake of oxidized low density lipoprotein and reversed IHR-induced IL6R/STAT3/GATA6/ICAM1/VCAM1 up-regulations. The findings indicate that the combined RNA interference may be a novel therapy for OSA-related endothelial dysfunction via regulating pro-/anti-oxidant imbalance or targeting miR-23a-IL6R-ICAM1/VCAM1 signaling.
Category
Class III. Pulmonary Hypertension Associated with Airway Disease, Apnea or Hypoventilation
Vascular Cell Biology and Mechanisms of Pulmonary Vascular Disease
Age Focus: Adult Pulmonary Vascular Disease
Fresh or Filed Publication: Filed (PHiled). Greater than 1-2 years since publication
Article Access
Free PDF File or Full Text Article Available Through PubMed or DOI: No