The eNAMPT/TLR4 inflammatory cascade drives the severity of intra-amniotic inflammation in pregnancy and predicts infant outcomes

Mohamed Ahmed, Nancy G. Casanova, Nahla Zaghloul, Akash Gupta, Marisela Rodriguez, Ian R. Robbins, Carrie L. Kempf, Xiaoguang Sun, Jin H. Song, Vivian Reyes Hernon, Saad Sammani, Sara M. Camp, Alvaro Moreira, Chaur-Dong Hsu, Joe G. N. Garcia
University of Arizona Health Sciences. UT Health San Antonio Long School of Medicine.
United States

Frontiers in Physiology
Front Physiol 2023;
DOI: 10.3389/fphys.2023.1129413

Abstract
Introduction: Intra-amniotic inflammation (IAI) or chorioamnionitis is a common complication of pregnancy producing significant maternal morbidity/mortality, premature birth and neonatal risk of chronic lung diseases such as bronchopulmonary dysplasia (BPD). We examined eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a critical inflammatory DAMP and TLR4 ligand, as a potential therapeutic target to reduce IAI severity and improve adverse fetal/neonatal outcomes. 
Methods: Blood/tissue samples were examined in: 1) women with histologically-proven chorioamnionitis, 2) very low birth weight (VLBW) neonates, and 3) a preclinical murine pregnancy model of IAI. Groups of pregnant IAI-exposed mice and pups were treated with an eNAMPT-neutralizing mAb. 
Results: Human placentas from women with histologically-proven chorioamnionitis exhibited dramatic NAMPT expression compared to placentas without chorioamnionitis. Increased NAMPT expression in whole blood from VLBW neonates (day 5) significantly predicted BPD development. Compared to untreated LPS-challenged murine dams (gestational day 15), pups born to eNAMPT mAb-treated dams (gestational days 15/16) exhibited a > 3-fold improved survival, reduced neonate lung eNAMPT/cytokine levels, and reduced development and severity of BPD and pulmonary hypertension (PH) following postnatal exposure to 100% hyperoxia days 1-14. Genome-wide gene expression studies of maternal uterine and neonatal cardiac tissues corroborated eNAMPT mAb-induced reductions in inflammatory pathway genes. 
Discussion: The eNAMPT/TLR4 inflammatory pathway is a highly druggable contributor to IAI pathobiology during pregnancy with the eNAMPT-neutralizing mAb a novel therapeutic strategy to decrease premature delivery and improve short- and long-term neonatal outcomes. eNAMPT blood expression is a potential biomarker for early prediction of chronic lung disease among premature neonates.

Category
Class III. Pulmonary Hypertension Associated with Lung Disease
Animal Models of Pulmonary Vascular Disease and Therapy
Potential Biomarkers Associated with Pulmonary Vascular Disease

Age Focus: Pediatric Pulmonary Vascular Disease

Fresh or Filed Publication: Filed (PHiled). Greater than 1-2 years since publication

Article Access
Free PDF File or Full Text Article Available Through PubMed or DOI: Yes

Scroll to Top